Lecture

Conditional Entropy: Huffman Coding

Description

This lecture by the instructor covers the concept of conditional entropy, focusing on Huffman coding for efficient data compression. Starting with the observation of ternary trees, the lecture progresses to discuss joint entropy, Shannon-Fano codes, and the compression of long strings using Huffman codes. The instructor explains how to calculate conditional entropy and conditional expectation, using examples like the 'Bit Flipper Channel'. The lecture concludes with a discussion on the behavior of codeword-length as the number of symbols increases and the complexity of finding optimal coding strategies. Students will gain insights into efficient data compression techniques and the trade-offs involved in coding strategies.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.