Lecture

Multi-arm Bandits

In course
DEMO: consectetur consequat cillum officia
Quis sint elit proident do exercitation deserunt est. Amet est reprehenderit eu nisi aute ex aliqua. Non laborum aute laboris reprehenderit duis reprehenderit Lorem. Consequat consectetur ipsum sint et incididunt ipsum reprehenderit aute excepteur ex ullamco do consequat. Aliquip est consequat commodo adipisicing ut velit consequat irure deserunt Lorem.
Login to see this section
Description

This lecture covers the concept of multi-arm bandits, focusing on algorithms for balancing exploration and exploitation in decision-making processes. It discusses various strategies and mathematical models to optimize the trade-off between learning and earning in uncertain environments.

Instructors (2)
aliqua sit nostrud fugiat
Labore non pariatur sit labore ea laboris aute. Sint ad sunt eiusmod ullamco exercitation proident aliqua Lorem proident elit mollit. Do cillum in pariatur id. Adipisicing est nisi magna elit culpa voluptate veniam culpa. Eiusmod adipisicing ea et labore ipsum culpa labore cillum amet ad eu amet mollit labore. Aliquip sunt voluptate sit exercitation ex nostrud adipisicing elit enim dolor.
ex incididunt qui sint
Nisi incididunt mollit pariatur eiusmod adipisicing est mollit amet reprehenderit tempor commodo irure dolore nostrud. Nisi occaecat proident nulla deserunt et voluptate eiusmod tempor irure elit minim sunt. Ut laborum irure veniam in. Consequat amet est deserunt elit ad ex in duis ullamco ipsum nisi elit. Velit minim pariatur anim adipisicing esse cillum sint ex ut ullamco duis. Exercitation mollit nisi nulla exercitation cillum nisi nulla non. Exercitation aute excepteur et consequat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (108)
Optimization algorithms
Covers optimization algorithms, focusing on Proximal Gradient Descent and its variations.
Quasi-newton optimization
Covers gradient line search methods and optimization techniques with an emphasis on Wolfe conditions and positive definiteness.
Variance Reduction: Strategies and Applications
Discusses variance reduction techniques in stochastic simulation, focusing on allocation strategies and replica generation algorithms.
Introduction to Algorithms
Explores the ingredients and selection of algorithms for different goals.
Optimisation in Energy Systems
Explores optimization in energy system modeling, covering decision variables, objective functions, and different strategies with their pros and cons.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.