Splines and Imaging: From Compressed Sensing to Deep Neural Nets
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Introduces a functional framework for deep neural networks with adaptive piecewise-linear splines, focusing on biomedical image reconstruction and the challenges of deep splines.
Introduces feed-forward networks, covering neural network structure, training, activation functions, and optimization, with applications in forecasting and finance.
Covers the fundamentals of deep learning, including data representations, bag of words, data pre-processing, artificial neural networks, and convolutional neural networks.
Explores neural networks' ability to learn features and make linear predictions, emphasizing the importance of data quantity for effective performance.