**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Bifurcations: Fold Bifurcation

Description

This lecture covers the concept of fold bifurcation in dynamical systems, focusing on the saddle-mode behavior of the system. It explains the mathematical representation of fold bifurcation and its implications, including the stability analysis of equilibrium points.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

Related concepts (42)

In course

Related lectures (69)

In computability theory, the μ-operator, minimization operator, or unbounded search operator searches for the least natural number with a given property. Adding the μ-operator to the primitive recursive functions makes it possible to define all computable functions. Suppose that R(y, x1, ..., xk) is a fixed (k+1)-ary relation on the natural numbers. The μ-operator "μy", in either the unbounded or bounded form, is a "number theoretic function" defined from the natural numbers to the natural numbers.

In mathematical logic and computer science, a general recursive function, partial recursive function, or μ-recursive function is a partial function from natural numbers to natural numbers that is "computable" in an intuitive sense – as well as in a formal one. If the function is total, it is also called a total recursive function (sometimes shortened to recursive function). In computability theory, it is shown that the μ-recursive functions are precisely the functions that can be computed by Turing machines (this is one of the theorems that supports the Church–Turing thesis).

Bifurcation theory is the mathematical study of changes in the qualitative or topological structure of a given family of curves, such as the integral curves of a family of vector fields, and the solutions of a family of differential equations. Most commonly applied to the mathematical study of dynamical systems, a bifurcation occurs when a small smooth change made to the parameter values (the bifurcation parameters) of a system causes a sudden 'qualitative' or topological change in its behavior.

X-ray radiation, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 nanometers to 10 picometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz (3e16Hz to 3e19Hz) and energies in the range 124 keV to 145 eV, respectively. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays.

X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites. X-ray astronomy uses a type of space telescope that can see x-ray radiation which standard optical telescopes, such as the Mauna Kea Observatories, cannot.

Introduction to Quantum Chaos

Covers the introduction to Quantum Chaos, classical chaos, sensitivity to initial conditions, ergodicity, and Lyapunov exponents.

Ergodicity & Mixing: Understanding Chaos

Explores ergodicity and mixing in dynamical systems to understand chaos and system behavior.

Transcritical Bifurcation: Theory and Applications

Explores the theory and applications of transcritical bifurcation, focusing on stability analysis and critical points.

Dynamical System Theory: Bifurcations

Covers the topic of bifurcations in dynamical system theory, focusing on the pitchfork bifurcation.

Vector Analysis: Gradient, Divergence, Curl

Covers the fundamental concepts of vector analysis, including the gradient, divergence, and curl operators.

COM-502: Dynamical system theory for engineers

Linear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali