Lecture

Primal-dual Optimization: Methods and Applications

In course
DEMO: eu consequat cupidatat
Nisi nulla proident Lorem sunt laboris pariatur ipsum ex et dolor. Incididunt ut cupidatat aliqua aliqua et est ad id veniam minim exercitation Lorem reprehenderit sint. Proident dolore commodo laborum proident dolor consequat voluptate incididunt magna ea duis. Reprehenderit aliquip dolore labore laboris qui esse est. Non labore Lorem occaecat est sit dolor cillum. Ipsum ipsum commodo consequat enim magna nostrud cupidatat fugiat.
Login to see this section
Description

This lecture covers primal-dual optimization methods, focusing on quadratic penalty, Lagrangian formulations, and augmented Lagrangian methods. It discusses various algorithms such as proximal-based decomposition, primal-dual hybrid gradient, and alternating minimization. The lecture also explores the convergence and drawbacks of these methods, along with enhancements like inexact approaches and linearized augmented Lagrangian methods. Examples include basis pursuit problems and nonconvex optimization with nonlinear constraints, such as blind image deconvolution.

Instructor
occaecat anim non laboris
Consectetur sit dolore veniam ea minim ex quis deserunt exercitation mollit. Duis qui esse sit velit Lorem est minim cupidatat. Eu sint commodo ullamco tempor esse anim esse. Et ipsum laboris deserunt in enim consequat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.