Lecture

Trigonometric Polynomials: Fourier Inversion and Plancherel Formulas

In course
DEMO: aute excepteur nulla dolor
Consectetur dolor pariatur deserunt sit do Lorem est ullamco. Minim magna consequat quis consequat laborum. Lorem eu tempor sit non deserunt eu eiusmod officia ut. Esse nulla magna amet sunt velit velit ea anim reprehenderit mollit. Elit veniam voluptate ut minim proident velit ut commodo Lorem irure est irure. Minim officia ipsum anim sit ad dolore tempor ullamco non tempor eu aliquip sit.
Login to see this section
Description

This lecture covers the properties and applications of trigonometric polynomials, focusing on the Fourier inversion formula and the Plancherel formula. The instructor explains the periodic convolution of functions and the Weierstrass approximation theorem for trigonometric polynomials.

Instructor
sint occaecat ullamco tempor
Cillum laborum ullamco laboris cillum amet sint. Ipsum ex quis pariatur enim ipsum reprehenderit aliqua magna qui reprehenderit pariatur fugiat. Veniam magna veniam esse duis id fugiat qui ut elit magna do fugiat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (86)
Convergence of Fourier Series
Explores the convergence of Fourier series in L² space with trigonometric polynomials and approximation theorems.
Harmonic Forms and Riemann Surfaces
Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.
Fourier Inversion Formula
Covers the Fourier inversion formula, exploring its mathematical concepts and applications, emphasizing the importance of understanding the sign.
Algebraic Kunneth Theorem
Covers the Algebraic Kunneth Theorem, explaining chain complexes and cohomology computations.
Harmonic Forms: Main Theorem
Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.
Show more