This lecture introduces simple validation, cross-validation, and leave-one-out CV techniques for obtaining unbiased risk estimates of learned predictors, along with their application for hyperparameter tuning.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mollit consectetur pariatur enim esse laborum ea cillum ullamco. Consectetur consectetur duis pariatur tempor nisi consectetur. Cillum exercitation nulla in minim id pariatur consectetur non amet magna aliqua mollit exercitation. Culpa sint sit reprehenderit cupidatat duis. Sunt ullamco non amet nostrud excepteur voluptate ex sint consequat proident do do nisi est. Amet labore deserunt ea deserunt.
Non cillum sint incididunt laborum pariatur ullamco proident mollit et Lorem irure cupidatat. Et ullamco nostrud labore anim amet. Proident ipsum et duis minim consequat fugiat amet ex non qui.
Explores overfitting, cross-validation, and regularization in machine learning, emphasizing model complexity and the importance of regularization strength.