Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Covers feature extraction, clustering, and classification methods for high-dimensional datasets and behavioral analysis using PCA, t-SNE, k-means, GMM, and various classification algorithms.
Delves into the spectral bias of polynomial neural networks, analyzing the impact on learning different frequencies and discussing experimental results.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.
Covers data science tools, Hadoop, Spark, data lake ecosystems, CAP theorem, batch vs. stream processing, HDFS, Hive, Parquet, ORC, and MapReduce architecture.