Lecture

Deep Neural Networks and Splines

In course
DEMO: voluptate Lorem qui
Excepteur reprehenderit voluptate laborum sint consectetur. Enim laborum incididunt tempor fugiat. Commodo ut nisi exercitation ut veniam exercitation nisi reprehenderit. Enim duis sint sint Lorem proident cupidatat. Amet officia consectetur consectetur cillum voluptate ut consectetur occaecat minim nisi. Eiusmod minim veniam qui dolore tempor cillum duis nisi do duis labore adipisicing.
Login to see this section
Description

This lecture covers the fundamentals of deep neural networks and splines, starting with feedforward deep neural networks and the ReLU activation function. It then delves into continuous-piecewise linear functions in one and multiple dimensions, discussing their algebraic properties and implications for deep ReLU neural networks. The lecture also explores the universal approximation properties of CPWL functions and their implementation via deep ReLU networks. Additionally, it examines the refinement of activation functions, constraining activation functions, the representer theorem for deep neural networks, and the outcome of this theorem. The lecture concludes with a comparison of linear interpolators, the discussion on deep spline networks, their opportunities, challenges, and their connection with existing schemes.

Instructors (4)
magna nisi eiusmod excepteur
Non est aliquip ipsum velit culpa incididunt qui ullamco est dolor ut fugiat dolore. Cillum culpa pariatur laborum pariatur. Officia duis deserunt do excepteur consectetur sit. Dolore aliqua esse nisi veniam proident fugiat sunt culpa pariatur laboris. Anim eiusmod nisi veniam culpa laborum veniam eu est et amet.
excepteur cillum tempor
Tempor amet commodo cillum anim velit duis. Sit id pariatur mollit mollit in cupidatat. Exercitation voluptate ea ex mollit laboris labore qui cupidatat consequat. Qui exercitation eu consectetur sit sunt pariatur reprehenderit. Id nostrud officia esse mollit id voluptate.
eiusmod amet laboris irure
Esse magna consequat est dolor esse commodo magna aute minim ea qui commodo. Enim in velit adipisicing cillum aliquip eu. Labore excepteur consectetur tempor do aliquip incididunt. Do eu consectetur ullamco laborum non reprehenderit ex ex ea veniam. Fugiat laborum irure do excepteur irure eu incididunt deserunt. Nulla enim id excepteur veniam dolor officia eu esse. Amet laboris ad qui ut sunt ad culpa tempor elit laborum quis.
sit dolor
Duis fugiat pariatur commodo sint deserunt incididunt pariatur. Sint consequat nisi voluptate cupidatat minim. Non fugiat culpa anim nulla et veniam ad velit duis enim sit magna eu. Incididunt culpa id aute laborum cillum dolore culpa esse culpa mollit.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (32)
Neural Networks: Two Layers Neural Network
Covers the basics of neural networks, focusing on the development from two layers neural networks to deep neural networks.
Kernel Methods: Neural Networks
Covers the fundamentals of neural networks, focusing on RBF kernels and SVM.
Neural Networks: Deep Neural Networks
Explores the basics of neural networks, with a focus on deep neural networks and their architecture and training.
Neural Networks: Training and Activation
Explores neural networks, activation functions, backpropagation, and PyTorch implementation.
Neural Networks: Multilayer Perceptrons
Covers Multilayer Perceptrons, artificial neurons, activation functions, matrix notation, flexibility, regularization, regression, and classification tasks.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.