Lecture

Coxeter Groups: Reflections and Fundamental Regions

In course
DEMO: sunt Lorem ipsum
Fugiat pariatur culpa labore nostrud nostrud esse enim. Sunt fugiat ad excepteur cupidatat dolore commodo ea commodo officia. Reprehenderit cillum elit ullamco non cupidatat commodo. Dolore nisi voluptate dolor excepteur sunt minim incididunt ea dolor ad. Pariatur non tempor et officia non velit non ullamco non ex cillum ipsum. Incididunt occaecat nulla amet officia nisi enim esse sit eu labore qui cillum voluptate. Excepteur velit id labore irure.
Login to see this section
Description

This lecture covers the concept of Coxeter groups, focusing on reflections and fundamental regions. It explains how any reflection in a Coxeter group is conjugate to a simple reflection, using examples like the rigid symmetries of a cube. The lecture also delves into the fundamental regions of Coxeter groups, demonstrating how they are generated by reflections with respect to walls. The classification of Coxeter groups by Coxeter graphs is discussed, along with the properties of simple roots and fundamental weights. Various examples are provided to illustrate these concepts.

Instructor
exercitation exercitation
Excepteur consectetur pariatur dolore culpa mollit dolore excepteur quis voluptate minim eiusmod. Amet duis ad do eiusmod esse ex ad consequat cupidatat amet sunt qui. Minim duis ipsum irure ut dolor anim officia nulla.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (35)
Isometries & Orientation in Modern Geometry
Explores true angle magnitude, reflections, isometries, and symmetries in modern geometry, with practical CAD applications.
Symmetry in Modern Geometry
Delves into modern geometry, covering transformations, isometries, and symmetries.
Coxeter groups: reflections, rotations
Reviews Coxeter groups, reflections, rotations, and fundamental regions in finite orthogonal transformations.
Coxeter Groups: Root System Classification and Fundamental Regions
Explains root system classification and fundamental regions in Coxeter groups.
McKay Graphs of Finite Subgroups of SU(2)
Explores McKay graphs for finite subgroups of SU(2) and the corresponding Coxeter graphs.
Show more