Lecture

Distinct Elements: Count and Hash Functions

In course
DEMO: culpa eiusmod sint
Exercitation magna quis non non. Commodo elit quis qui Lorem ut ullamco. Excepteur culpa magna laboris nostrud aliquip tempor proident in. Cillum velit aliqua velit ea duis. Consequat sunt aliquip officia sit. Labore magna est aliqua culpa incididunt labore. Nisi aliquip enim duis ut et id incididunt elit laboris culpa.
Login to see this section
Description

This lecture covers the concept of counting distinct elements using hash functions, focusing on the algorithm to estimate the number of distinct elements in a stream. The instructor explains the use of the median trick and the space complexity involved in storing hash functions.

Instructors (3)
ut enim
Ipsum amet culpa ut consectetur exercitation incididunt qui cupidatat velit et cillum. Enim ipsum elit consequat est ex enim proident occaecat nisi cupidatat irure ea velit magna. Elit veniam elit do incididunt veniam mollit ut. Do cupidatat nostrud Lorem eu exercitation consequat.
esse elit non
Irure nostrud aliqua non tempor. Occaecat deserunt et est occaecat cillum ad aliqua cupidatat adipisicing do voluptate. In nulla consequat irure tempor quis incididunt irure pariatur mollit duis. Excepteur velit voluptate non non elit aliqua aliqua do cupidatat irure.
dolor fugiat
Tempor culpa ut sit incididunt laboris consequat. Quis aliquip duis excepteur quis. Consectetur irure tempor veniam et nisi sunt ut esse tempor ullamco commodo magna.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (25)
Quantum Random Number Generation
Explores quantum random number generation, discussing the challenges and implementations of generating good randomness using quantum devices.
Complexity & Induction: Algorithms & Proofs
Covers worst-case complexity, algorithms, and proofs including mathematical induction and recursion.
Complexity & Induction: Algorithms & Proofs
Explores worst-case complexity, mathematical induction, and algorithms like binary search and insertion sort.
Shor's factoring algorithm: Quantum Phase Estimation
Covers Shor's factoring algorithm and the link between order finding and factoring.
Graph Sketching: Connected Components
Covers the concept of graph sketching with a focus on connected components.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.