Explores gradient descent methods for smooth convex and non-convex problems, covering iterative strategies, convergence rates, and challenges in optimization.
Covers optimization techniques in machine learning, focusing on convexity, algorithms, and their applications in ensuring efficient convergence to global minima.
Discusses Stochastic Gradient Descent and its application in non-convex optimization, focusing on convergence rates and challenges in machine learning.
Explores explicit stabilised Runge-Kutta methods and their application to Bayesian inverse problems, covering optimization, sampling, and numerical experiments.