**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Expectation: Basic Properties

Description

This lecture covers the basic properties of expectation, including integrability, square-integrability, boundedness, centering, and linearity. It also discusses the positivity property for non-negative integrable random variables.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

Instructors (2)

Related concepts (29)

COM-417: Advanced probability and applications

In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti

,

Random variable

A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. The term 'random variable' can be misleading as it is not actually random nor a variable, but rather it is a function from possible outcomes (e.g., the possible upper sides of a flipped coin such as heads and tails ) in a sample space (e.g., the set ) to a measurable space (e.g., in which 1 corresponding to and −1 corresponding to ), often to the real numbers.

Exchangeable random variables

In statistics, an exchangeable sequence of random variables (also sometimes interchangeable) is a sequence X1, X2, X3, ... (which may be finitely or infinitely long) whose joint probability distribution does not change when the positions in the sequence in which finitely many of them appear are altered. Thus, for example the sequences both have the same joint probability distribution. It is closely related to the use of independent and identically distributed random variables in statistical models.

Complex random variable

In probability theory and statistics, complex random variables are a generalization of real-valued random variables to complex numbers, i.e. the possible values a complex random variable may take are complex numbers. Complex random variables can always be considered as pairs of real random variables: their real and imaginary parts. Therefore, the distribution of one complex random variable may be interpreted as the joint distribution of two real random variables.

Independent and identically distributed random variables

In probability theory and statistics, a collection of random variables is independent and identically distributed if each random variable has the same probability distribution as the others and all are mutually independent. This property is usually abbreviated as i.i.d., iid, or IID. IID was first defined in statistics and finds application in different fields such as data mining and signal processing. Statistics commonly deals with random samples. A random sample can be thought of as a set of objects that are chosen randomly.

Convergence of random variables

In probability theory, there exist several different notions of convergence of random variables. The convergence of sequences of random variables to some limit random variable is an important concept in probability theory, and its applications to statistics and stochastic processes. The same concepts are known in more general mathematics as stochastic convergence and they formalize the idea that a sequence of essentially random or unpredictable events can sometimes be expected to settle down into a behavior that is essentially unchanging when items far enough into the sequence are studied.

Related lectures (276)

Conditional expectationMATH-332: Stochastic processes

Explores the properties of conditional expectation and its extension to positive variables.

Conditional ExpectationMATH-431: Theory of stochastic calculus

Explores the properties and definition of conditional expectation in random variables.

Random Variables and Expected ValueCS-101: Advanced information, computation, communication I

Introduces random variables, probability distributions, and expected values through practical examples.

Transformation of Random VariablesMATH-233: Probability and statistics

Explores the transformation of random variables, joint moments, covariance, and variance.

Probability ReviewCOM-406: Foundations of Data Science

Introduces subgaussian and subexponential random variables, conditional expectation, and Orlicz norms.