**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Coordinate Space: Representation and Operations

Description

This lecture introduces the concept of coordinate space in two dimensions, explaining how to represent points and vectors using coordinates. It covers operations such as addition and subtraction of coordinates, as well as the properties of the zero vector and the inverse of a vector. The lecture also discusses the set of real numbers and n-tuples, providing examples to illustrate these concepts.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

In MOOCs (9)

Related concepts (24)

Related lectures (32)

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 1)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)

Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 2)Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Algebra (part 3)Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.

Vector space

In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called vectors, may be added together and multiplied ("scaled") by numbers called scalars. Scalars are often real numbers, but can be complex numbers or, more generally, elements of any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called vector axioms. The terms real vector space and complex vector space are often used to specify the nature of the scalars: real coordinate space or complex coordinate space.

Euclidean vector

In mathematics, physics, and engineering, a Euclidean vector or simply a vector (sometimes called a geometric vector or spatial vector) is a geometric object that has magnitude (or length) and direction. Vectors can be added to other vectors according to vector algebra. A Euclidean vector is frequently represented by a directed line segment, or graphically as an arrow connecting an initial point A with a terminal point B, and denoted by . A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "carrier".

Unit vector

In mathematics, a unit vector in a normed vector space is a vector (often a spatial vector) of length 1. A unit vector is often denoted by a lowercase letter with a circumflex, or "hat", as in (pronounced "v-hat"). The term direction vector, commonly denoted as d, is used to describe a unit vector being used to represent spatial direction and relative direction. 2D spatial directions are numerically equivalent to points on the unit circle and spatial directions in 3D are equivalent to a point on the unit sphere.

Real number

In mathematics, a real number is a number that can be used to measure a continuous one-dimensional quantity such as a distance, duration or temperature. Here, continuous means that pairs of values can have arbitrarily small differences. Every real number can be almost uniquely represented by an infinite decimal expansion. The real numbers are fundamental in calculus (and more generally in all mathematics), in particular by their role in the classical definitions of limits, continuity and derivatives.

Vector calculus

Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations.

Vector Spaces: Axioms and ExamplesMATH-111(e): Linear Algebra

Covers the axioms and examples of vector spaces, including matrices and polynomials.

Orthogonal Complement and Projection TheoremsMATH-111(e): Linear Algebra

Explores orthogonal complement and projection theorems in vector spaces.

Scalar Product: Algebraic Properties

Explores the algebraic properties of the scalar product and their geometric implications.

Analytical Geometry: Vectors and Operations

Covers the fundamentals of analytical geometry, focusing on vectors and their operations.

Polynomials Vector SpaceMOOC: Algebra (part 1)

Covers the properties of polynomials vector space and subspaces.