Skip to main content
Graph
Search
fr
|
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Estimation Methods: Bias-Variance Tradeoff
Graph Chatbot
Related lectures (32)
Previous
Page 1 of 4
Next
Estimation and Confidence Intervals
Explores bias, variance, and confidence intervals in parameter estimation using examples and distributions.
Estimators and Confidence Intervals
Explores bias, variance, unbiased estimators, and confidence intervals in statistical estimation.
Confidence Intervals: Gaussian Estimation
Explores confidence intervals, Gaussian estimation, Cramér-Rao inequality, and Maximum Likelihood Estimators.
Point Estimation Methods: MOM and MLE
Explores point estimation methods like MOM and MLE, discussing bias, variance, and examples.
Basic Principles of Point Estimation
Explores the Method of Moments, Bias-Variance tradeoff, Consistency, Plug-In Principle, and Likelihood Principle in point estimation.
Confidence Intervals: Definition and Estimation
Explains confidence intervals, parameter estimation methods, and the central limit theorem in statistical inference.
Estimation Methods in Probability and Statistics
Discusses estimation methods in probability and statistics, focusing on maximum likelihood estimation and confidence intervals.
Estimating Parameters: Confidence Intervals
Explores estimating parameters through confidence intervals in linear regression and statistics.
Probability and Statistics II: Estimation and Hypothesis Testing
Covers the Central Limit Theorem, confidence intervals, hypothesis testing, and qualities of estimators.
Intro to Quantum Sensing: Parameter Estimation and Fisher Information
Introduces Fisher Information for parameter estimation based on collected data.