Covers gradient descent methods for convex and nonconvex problems, including smooth unconstrained convex minimization, maximum likelihood estimation, and examples like ridge regression and image classification.
Explores optimization methods like gradient descent and subgradients for training machine learning models, including advanced techniques like Adam optimization.
Explores adversarial machine learning, covering the generation of adversarial examples, robustness challenges, and techniques like Fast Gradient Sign Method.
Discusses optimization techniques in machine learning, focusing on stochastic gradient descent and its applications in constrained and non-convex problems.
Discusses Stochastic Gradient Descent and its application in non-convex optimization, focusing on convergence rates and challenges in machine learning.