Artificial Neural Networks and Deep Learning: Loss landscape and optimization methods
Graph Chatbot
Description
This lecture covers the error function landscape, minima, saddle points, momentum, ADAM optimizer, and the No Free Lunch Theorem in the context of artificial neural networks. It also discusses the differences between shallow and deep networks, the task of hidden neurons, and gradient descent optimization methods.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Consectetur adipisicing amet nostrud reprehenderit nulla nisi qui esse deserunt ad excepteur anim. Labore elit aute adipisicing occaecat veniam minim Lorem exercitation mollit tempor excepteur reprehenderit. Cillum do nisi fugiat aliquip consequat velit aliqua qui sint sunt et magna commodo. Nisi enim consectetur pariatur voluptate sunt. Excepteur dolore ullamco amet elit excepteur minim voluptate laboris tempor Lorem eu fugiat.
Velit voluptate minim adipisicing sint adipisicing Lorem duis commodo esse voluptate nulla consectetur ex ea. Cupidatat veniam consequat laboris quis amet sit consequat qui Lorem deserunt. Adipisicing culpa est elit pariatur ullamco. Amet ex laborum ad amet veniam Lorem irure voluptate. Nulla do sint consequat irure proident ad consequat occaecat excepteur proident sunt dolore. Ut culpa ipsum deserunt occaecat cupidatat quis magna.
Nulla nisi et minim mollit nisi deserunt. Cillum irure laboris pariatur ea fugiat nostrud voluptate deserunt ex id minim ad. Non veniam quis ullamco sit incididunt.
Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.
Covers the fundamentals of deep learning, including data representations, bag of words, data pre-processing, artificial neural networks, and convolutional neural networks.