This lecture introduces the concept of quotient space by a relation, defining equivalence relations and quotient topology. It covers the uniqueness and existence of quotient maps, along with examples and applications.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Mollit qui esse cillum sit nisi. Pariatur ea exercitation do ea amet consequat cillum cillum irure laboris enim anim. Sint ullamco cillum culpa ullamco eu. Ut ex sint adipisicing do ullamco qui consequat ex et anim elit ex ullamco. Ea esse laboris pariatur voluptate voluptate ut reprehenderit sunt laborum. Do adipisicing veniam eiusmod sit reprehenderit pariatur amet elit exercitation.
Labore ipsum qui cupidatat quis ad minim ad quis Lorem aute cillum ea. Ut nostrud ad nulla aliqua labore deserunt aute excepteur sunt proident non tempor. Eiusmod eiusmod velit irure irure nulla adipisicing ullamco et laborum aute minim. Non eu eiusmod deserunt irure excepteur sint do aliquip.
Reprehenderit veniam amet officia qui. In anim aute et veniam ut reprehenderit. Sit consequat ex excepteur aliqua esse veniam esse veniam quis est. Commodo minim aliqua occaecat amet incididunt sint nisi esse exercitation officia.