Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.
Covers Convolutional Neural Networks, including layers, training strategies, standard architectures, tasks like semantic segmentation, and deep learning tricks.
Covers the fundamentals of deep learning, including data representations, bag of words, data pre-processing, artificial neural networks, and convolutional neural networks.