Skip to main content
Graph
Search
fr
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Optimization Basics: Norms, Convexity, Differentiability
Graph Chatbot
Related lectures (29)
Previous
Page 3 of 3
Next
Orthogonal Projections: Rectors and Norms
Covers orthogonal projections, rectors, norms, and geometric observations in vector spaces.
Orthogonality and Least Squares Methods
Explores orthogonality, norms, and distances in vector spaces for solving linear systems.
Matrix Exponential: Properties and Justifications
Covers the properties of the matrix exponential and its justification through the norm definition.
Vectors and Norms: Introduction to Linear Algebra Concepts
Covers essential concepts of vectors, norms, and their properties in linear algebra.
Sobolev Spaces in Higher Dimensions
Explores Sobolev spaces in higher dimensions, discussing derivatives, properties, and challenges with continuity.
Orthogonal Projection: Vector Decomposition
Explains orthogonal projection and vector decomposition with examples in particle trajectory analysis.
Advanced Analysis II: Recap and Open Sets
Covers a recap of Analysis I and delves into the concept of open sets in R^n, emphasizing their importance in mathematical analysis.
Functional Analysis I: Norms and Bounded Operators
Explores norms and bounded operators in functional analysis, demonstrating their properties and applications.
Normed Spaces & Reflexivity
Covers normed spaces, Banach spaces, and Hilbert spaces, as well as dual spaces and weak convergence.