Lecture

Clustering Techniques: K-means and DBSCAN

In course
DEMO: id velit
Ullamco anim incididunt nulla Lorem consectetur. Ea Lorem ipsum eu tempor amet elit tempor minim non. Dolor tempor dolore amet duis occaecat voluptate adipisicing ex cupidatat elit minim fugiat. Aliquip ut exercitation velit labore cillum excepteur do adipisicing amet labore exercitation consequat velit. Laboris laborum in adipisicing ex aute fugiat. Duis cupidatat veniam est sunt velit eiusmod do sint minim fugiat eiusmod esse. Non sunt in irure duis fugiat.
Login to see this section
Description

This lecture covers the practical implementation of clustering techniques, focusing on k-means and DBSCAN algorithms. The instructor explains how to determine the number of clusters in k-means and the classification types in DBSCAN. The lecture includes hands-on exercises on assigning data points to centroids and computing new centroid positions. Additionally, it discusses the concept of core, border, and noise points in DBSCAN, illustrating how these points are classified and connected in a dataset.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.