**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Numerical Methods: Euler and Crank-Nicolson

Description

This lecture covers the Euler methods (forward and backward), Crank-Nicolson method, and Heun's method for solving differential equations. It explains the convergence analysis, local truncation error, and consistency of the methods.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (42)

Trimmed estimator

In statistics, a trimmed estimator is an estimator derived from another estimator by excluding some of the extreme values, a process called truncation. This is generally done to obtain a more robust statistic, and the extreme values are considered outliers. Trimmed estimators also often have higher efficiency for mixture distributions and heavy-tailed distributions than the corresponding untrimmed estimator, at the cost of lower efficiency for other distributions, such as the normal distribution.

Winsorizing

Winsorizing or winsorization is the transformation of statistics by limiting extreme values in the statistical data to reduce the effect of possibly spurious outliers. It is named after the engineer-turned-biostatistician Charles P. Winsor (1895–1951). The effect is the same as clipping in signal processing. The distribution of many statistics can be heavily influenced by outliers. A typical strategy is to set all outliers to a specified percentile of the data; for example, a 90% winsorization would see all data below the 5th percentile set to the 5th percentile, and data above the 95th percentile set to the 95th percentile.

Truncated mean

A truncated mean or trimmed mean is a statistical measure of central tendency, much like the mean and median. It involves the calculation of the mean after discarding given parts of a probability distribution or sample at the high and low end, and typically discarding an equal amount of both. This number of points to be discarded is usually given as a percentage of the total number of points, but may also be given as a fixed number of points. For most statistical applications, 5 to 25 percent of the ends are discarded.

Sample mean and covariance

The sample mean (sample average) or empirical mean (empirical average), and the sample covariance or empirical covariance are statistics computed from a sample of data on one or more random variables. The sample mean is the average value (or mean value) of a sample of numbers taken from a larger population of numbers, where "population" indicates not number of people but the entirety of relevant data, whether collected or not. A sample of 40 companies' sales from the Fortune 500 might be used for convenience instead of looking at the population, all 500 companies' sales.

Nth root

In mathematics, taking the nth root is an operation involving two numbers, the radicand and the index or degree. Taking the nth root is written as , where x is the radicand and n is the index (also sometimes called the degree). This is pronounced as "the nth root of x". The definition then of an nth root of a number x is a number r (the root) which, when raised to the power of the positive integer n, yields x: A root of degree 2 is called a square root (usually written without the n as just ) and a root of degree 3, a cube root (written ).

Related lectures (212)

Zero-stability and absolute-stability

Explores zero-stability and absolute-stability in numerical methods, including Forward Euler, Backward Euler, Crank-Nicolson, and Heun's methods.

System of ODEs: High Order ODEs

Covers high order ODEs, numerical methods, and stability criteria.

Runge Kutta and Multistep Methods

Explores Runge Kutta and multistep methods for solving ODEs, including Backward Euler and Crank-Nicolson.

Inverse Power Method: Introduction to ODEs

Explores the inverse power method for ODEs and the significance of Lipschitz continuity.

High Order Methods: Space DiscretisationMATH-351: Advanced numerical analysis

Covers high order methods for space discretisation in linear differential systems.