**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Perspective in Descriptive Geometry

Description

This lecture covers the method of vanishing points in Monge's representation, focusing on constructing the image of a building through central projection. It also discusses the perspective images of horizontal and vertical lines, as well as parallel and non-parallel lines. The concept of the vanishing point associated with a non-parallel line is explained, along with the process of obtaining the perspective image of a line by determining characteristic points. Practical examples are provided to illustrate the concepts discussed.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (124)

Regular polygon

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon (effectively a straight line), if the edge length is fixed. These properties apply to all regular polygons, whether convex or star.

Regular polytope

In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or j-faces (for all 0 ≤ j ≤ n, where n is the dimension of the polytope) — cells, faces and so on — are also transitive on the symmetries of the polytope, and are regular polytopes of dimension ≤ n. Regular polytopes are the generalized analog in any number of dimensions of regular polygons (for example, the square or the regular pentagon) and regular polyhedra (for example, the cube).

Line (geometry)

In geometry, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist embedded in two, three, or higher dimensional spaces. The word line may also refer to a line segment in everyday life that has two points to denote its ends (endpoints). A line can be referred to by two points that lie on it (e.g. ) or by a single letter (e.g. ).

Boundary layer

In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces a no-slip boundary condition (zero velocity at the wall). The flow velocity then monotonically increases above the surface until it returns to the bulk flow velocity. The thin layer consisting of fluid whose velocity has not yet returned to the bulk flow velocity is called the velocity boundary layer.

Parallel (geometry)

In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three-dimensional Euclidean space, a line and a plane that do not share a point are also said to be parallel. However, two noncoplanar lines are called skew lines. Parallel lines are the subject of Euclid's parallel postulate.

Related lectures (137)

Perspective: Radial Method

Covers the concept of perspective in geometry and the radial method of creating images using central projection.

Volumes of Solids: Calculating Volumes of Solid Bodies

Covers the calculation of volumes of solid bodies using slices and integrating the cross-sectional area.

Vectorworks Educational Version

Introduces Vectorworks Educational Version for architectural drawings, covering tools, layers, and annotations.

Division in Extreme and Mean Reason: Luca Pacioli's Influence

Delves into the concept of Division in Extreme and Mean Reason (DEMR) and its historical significance in geometry.

Vector Spaces in R2 and R3

Covers vector spaces in R2 and R3, including planes and lines.