Skip to main content
Graph
Search
fr
en
Login
Search
All
Categories
Concepts
Courses
Lectures
MOOCs
People
Practice
Publications
Startups
Units
Show all results for
Home
Lecture
Jensen's Inequality
Graph Chatbot
Related lectures (29)
Previous
Page 2 of 3
Next
Conjugate Duality: Understanding Convex Optimization
Explores conjugate duality in convex optimization, covering weak and supporting hyperplanes, subgradients, duality gap, and strong duality conditions.
Convex Optimization: Gradient Descent
Explores VC dimension, gradient descent, convex sets, and Lipschitz functions in convex optimization.
Optimal Transport: Convexity and Inequalities
Explores optimal transport, emphasizing convexity properties and inequalities in compact sets.
Convex Optimization
Introduces convex optimization, focusing on the importance of convexity in algorithms and optimization problems.
Optimization Techniques: Convexity and Algorithms in Machine Learning
Covers optimization techniques in machine learning, focusing on convexity, algorithms, and their applications in ensuring efficient convergence to global minima.
KKT and Convex Optimization
Covers the KKT conditions and convex optimization, discussing constraint qualifications and tangent cones of convex sets.
Proximal Gradient Descent: Optimization Techniques in Machine Learning
Discusses proximal gradient descent and its applications in optimizing machine learning algorithms.
Convex Sets and Functions
Introduces convex sets and functions, discussing minimizers, optimality conditions, and characterizations, along with examples and key inequalities.
Subgradients and Convex Functions
Explores subgradients in convex functions, emphasizing non-differentiable yet convex scenarios and properties of subdifferentials.
Optimization Techniques: Gradient Descent and Convex Functions
Provides an overview of optimization techniques, focusing on gradient descent and properties of convex functions in machine learning.