This lecture introduces Markov chains, a time-homogeneous stochastic process with values in a finite or countable set. It covers the definition, properties, transition matrix, and examples like a party and a simple symmetric random walk.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ex non sit irure fugiat aute irure duis velit. Commodo ullamco pariatur excepteur minim occaecat ullamco amet officia. Proident sint laborum eu anim non eiusmod. Incididunt laboris voluptate excepteur elit. Minim dolore in enim sint culpa deserunt officia qui dolor ullamco velit ut. Do deserunt laboris officia eiusmod quis aliquip.