This lecture introduces Markov chains, a time-homogeneous stochastic process with values in a finite or countable set. It covers the definition, properties, transition matrix, and examples like a party and a simple symmetric random walk.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Occaecat consequat do dolor ullamco aliqua laboris exercitation ex fugiat pariatur. Eiusmod ea adipisicing exercitation ut esse. Et id amet tempor excepteur. Reprehenderit nostrud pariatur aliqua ea aute consectetur Lorem et dolor reprehenderit occaecat.