This lecture introduces Markov chains, a time-homogeneous stochastic process with values in a finite or countable set. It covers the definition, properties, transition matrix, and examples like a party and a simple symmetric random walk.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Labore cillum nostrud nulla labore do. Ullamco veniam officia cupidatat reprehenderit sit consectetur enim duis. Tempor et esse ut laboris proident culpa cupidatat. Ut excepteur quis proident minim fugiat exercitation fugiat qui Lorem. Esse aliquip culpa consequat eiusmod.