Covers the fundamentals of multilayer neural networks and deep learning, including back-propagation and network architectures like LeNet, AlexNet, and VGG-16.
Covers the fundamentals of deep learning, including data representations, bag of words, data pre-processing, artificial neural networks, and convolutional neural networks.
Discusses optimization techniques in machine learning, focusing on stochastic gradient descent and its applications in constrained and non-convex problems.
Discusses Stochastic Gradient Descent and its application in non-convex optimization, focusing on convergence rates and challenges in machine learning.