Lecture

Contextual Bandits: Simplifying Strategy for Content Selection

In course
DEMO: cupidatat pariatur enim
Occaecat consequat proident adipisicing dolore dolore ipsum esse voluptate in eiusmod qui ea. Dolor veniam sit sunt mollit sint eu sint. Anim eiusmod exercitation culpa nostrud nulla. Ex tempor non mollit sint. Consectetur irure excepteur adipisicing irure deserunt minim.
Login to see this section
Description

This lecture introduces the concept of contextual bandits, a strategy for selecting content based on a set number of possible options, by running an algorithm for each context. The downsides and limitations of this approach are discussed, highlighting the need for a more efficient selection process.

Instructors (2)
tempor ad sit ex
Laboris nulla dolor amet non. Incididunt eu proident nulla sint. Proident aute magna commodo ipsum occaecat. Consectetur occaecat cillum qui nulla anim incididunt deserunt commodo amet. Tempor nostrud eu ea consectetur cupidatat sunt ipsum quis labore incididunt incididunt non cupidatat ad. Ad excepteur sint veniam ad do aliqua. Id minim dolore excepteur esse aliquip anim qui ipsum mollit deserunt aliqua amet aliqua ea.
aliquip Lorem consectetur eu
Occaecat amet mollit tempor consectetur et amet reprehenderit est nisi duis reprehenderit id eiusmod nisi. Id magna adipisicing in proident do occaecat aliquip aute ullamco. Ullamco enim occaecat non esse. Reprehenderit reprehenderit pariatur consectetur ut consequat duis reprehenderit ea ex ad officia eiusmod. Do laborum deserunt reprehenderit enim esse.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (56)
Multi-arm Bandits: Exploration vs Exploitation
Explores the balance between exploration and exploitation in multi-arm bandit algorithms.
Exponential Family: Maximum Entropy Distributions
Covers exponential families and maximum entropy distributions under moment constraints.
Quantum Random Number Generation
Explores quantum random number generation, discussing the challenges and implementations of generating good randomness using quantum devices.
Hermite Normal Form: Computation & Properties
Covers the computation and properties of the Hermite Normal Form (HNF) in matrix theory and lattice theory.
Transference Bounds
Explores transference bounds, ellipsoids, and determining the shortest vector.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.