Explores linear models for classification, including parametric models, regression, and logistic regression, along with model evaluation metrics and maximum margin classifiers.
Covers linear models, including regression, derivatives, gradients, hyperplanes, and classification transition, with a focus on minimizing risk and evaluation metrics.
Covers a review of machine learning concepts, including supervised learning, classification vs regression, linear models, kernel functions, support vector machines, dimensionality reduction, deep generative models, and cross-validation.