Explores the influence of complexity on ergodic properties of symbolic systems, presenting the Curtis-Hedlund-Lyndon Theorem and constructions of minimal subshifts.
Covers Markov processes, transition densities, and distribution conditional on information, discussing classification of states and stationary distributions.
Introduces Hidden Markov Models, explaining the basic problems and algorithms like Forward-Backward, Viterbi, and Baum-Welch, with a focus on Expectation-Maximization.