Covers CNNs, RNNs, SVMs, and supervised learning methods, emphasizing the importance of tuning regularization and making informed decisions in machine learning.
Explores the learning dynamics of deep neural networks using linear networks for analysis, covering two-layer and multi-layer networks, self-supervised learning, and benefits of decoupled initialization.
Explores perception in deep learning for autonomous vehicles, covering image classification, optimization methods, and the role of representation in machine learning.
Explores the evolution of image representation, challenges in supervised learning, benefits of self-supervised learning, and recent advancements in SSL.