**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Real Functions: Definitions and Examples

Description

This lecture covers the definitions and examples of real functions of a real variable, including the concept of line images and domain of definition. It also explores the properties of real functions, such as monotonicity and periodicity.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (142)

Lemniscate elliptic functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others. The lemniscate sine and lemniscate cosine functions, usually written with the symbols sl and cl (sometimes the symbols sinlem and coslem or sin lemn and cos lemn are used instead), are analogous to the trigonometric functions sine and cosine.

Jacobi elliptic functions

In mathematics, the Jacobi elliptic functions are a set of basic elliptic functions. They are found in the description of the motion of a pendulum (see also pendulum (mathematics)), as well as in the design of electronic elliptic filters. While trigonometric functions are defined with reference to a circle, the Jacobi elliptic functions are a generalization which refer to other conic sections, the ellipse in particular. The relation to trigonometric functions is contained in the notation, for example, by the matching notation for .

Elliptic function

In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those integrals occurred at the calculation of the arc length of an ellipse. Important elliptic functions are Jacobi elliptic functions and the Weierstrass -function. Further development of this theory led to hyperelliptic functions and modular forms.

Theta function

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory. The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called z), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function.

Exponential function

The exponential function is a mathematical function denoted by or (where the argument x is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras. The exponential function originated from the notion of exponentiation (repeated multiplication), but modern definitions (there are several equivalent characterizations) allow it to be rigorously extended to all real arguments, including irrational numbers.

Related lectures (750)

Mathematical Analysis: Functions and CompositionMATH-101(d): Analysis I

Covers the analysis of functions, composition, and mathematical induction.

Graph Sketching: Motion Analysis

Explores motion graph analysis, focusing on function study and derivative interpretation.

Derivatives and Continuity in Multivariable Functions

Covers derivatives and continuity in multivariable functions, emphasizing the importance of partial derivatives.

Mathematics: Analysis and Algebra OverviewMATH-101(e): Analysis I

Provides an overview of analysis and algebra courses, focusing on real numbers, limits, functions, and exams.

Linear Transformations: Matrices and Kernels

Covers linear transformations, matrices, kernels, and properties of invertible matrices.