Simpson's ruleIn numerical integration, Simpson's rules are several approximations for definite integrals, named after Thomas Simpson (1710–1761). The most basic of these rules, called Simpson's 1/3 rule, or just Simpson's rule, reads In German and some other languages, it is named after Johannes Kepler, who derived it in 1615 after seeing it used for wine barrels (barrel rule, Keplersche Fassregel). The approximate equality in the rule becomes exact if f is a polynomial up to and including 3rd degree.
Trapezoidal ruleIn calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule; see Trapezoid for more information on terminology) is a technique for approximating the definite integral. The trapezoidal rule works by approximating the region under the graph of the function as a trapezoid and calculating its area. It follows that The trapezoidal rule may be viewed as the result obtained by averaging the left and right Riemann sums, and is sometimes defined this way.
Riemann sumIn mathematics, a Riemann sum is a certain kind of approximation of an integral by a finite sum. It is named after nineteenth century German mathematician Bernhard Riemann. One very common application is approximating the area of functions or lines on a graph, but also the length of curves and other approximations. The sum is calculated by partitioning the region into shapes (rectangles, trapezoids, parabolas, or cubics) that together form a region that is similar to the region being measured, then calculating the area for each of these shapes, and finally adding all of these small areas together.
Numerical analysisNumerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts.
Midpoint methodIn numerical analysis, a branch of applied mathematics, the midpoint method is a one-step method for numerically solving the differential equation, The explicit midpoint method is given by the formula the implicit midpoint method by for Here, is the step size — a small positive number, and is the computed approximate value of The explicit midpoint method is sometimes also known as the modified Euler method, the implicit method is the most simple collocation method, and, applied to Hamiltonian dynamics, a sy