This lecture covers the interpretation of a Discrete Fourier Transform (DFT) plot, explaining the significance of different frequencies, energy distribution, and the DFT of real signals. It discusses how to analyze the magnitude of DFT coefficients and the energy concentration at specific frequencies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Covers the theory of numerical methods for frequency estimation on deterministic signals, including Fourier series and transform, Discrete Fourier transform, and the Sampling theorem.
Covers the Fourier transform, its properties, applications in signal processing, and differential equations, emphasizing the concept of derivatives becoming multiplications in the frequency domain.
Explores psychoacoustics, signal processing, and the brain's interpretation of sound frequencies, covering topics like the Missing Fundamental phenomenon and the inner workings of the cochlea.