Lecture

Lossless Compression: Shannon-Fano and Huffman

In course
DEMO: laborum ullamco qui
Nisi sunt laboris et culpa nostrud ullamco magna commodo. Fugiat eu nulla non Lorem cillum labore enim sint. Culpa minim incididunt laboris consequat quis aliqua consequat in tempor velit do cupidatat est aute.
Login to see this section
Description

This lecture covers the principles of lossless compression, focusing on exploiting data redundancy to shorten sequences efficiently. It introduces the Shannon-Fano algorithm, which divides letters based on their frequency, and the Huffman algorithm, which assigns variable-length codes to optimize compression. By comparing the two methods, the instructor demonstrates how Huffman coding outperforms Shannon-Fano in terms of efficiency and speed. The lecture also delves into the concept of entropy, calculating the entropy of a given sequence to highlight the effectiveness of Huffman coding in minimizing the average number of bits per letter.

In MOOCs (2)
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Information, Calcul, Communication: Introduction à la pensée informatique
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Instructors (3)
magna dolor
Non tempor velit mollit qui ad irure ad deserunt voluptate aute fugiat irure labore eiusmod. Dolore dolore elit commodo ea mollit velit. Enim sint officia occaecat dolore nulla exercitation commodo esse sint proident fugiat veniam proident proident.
est fugiat
Pariatur velit elit excepteur nostrud laboris labore in. Ipsum id labore dolore ipsum Lorem commodo culpa. Ipsum labore do ipsum magna ut ullamco cupidatat magna nisi nostrud deserunt nisi. Do reprehenderit consequat aliqua dolore officia voluptate. Commodo aliquip enim dolor ullamco ex voluptate nulla culpa consectetur eiusmod consequat. Esse qui qui cillum tempor non consequat excepteur amet nisi. Lorem pariatur tempor deserunt quis elit pariatur esse dolor cillum consequat.
mollit officia
Consectetur nisi ex cupidatat ullamco deserunt est do ex duis. Anim nulla eiusmod amet eiusmod minim sit cillum. Est reprehenderit adipisicing ex velit pariatur mollit aliqua tempor id elit excepteur quis.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (46)
Quantum Information
Explores the CHSH operator, self-testing, eigenstates, and quantifying randomness in quantum systems.
Compression: Prefix-Free Codes
Explains prefix-free codes for efficient data compression and the significance of uniquely decodable codes.
Data Compression and Entropy: Conclusion
Covers the definition of entropy, Shannon–Fano algorithm, and upcoming topics.
Data Compression and Shannon's Theorem Summary
Summarizes Shannon's theorem, emphasizing the importance of entropy in data compression.
Entropy and Compression I
Explores entropy theory, compression without loss, and the efficiency of the Shannon-Fano algorithm in data compression.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.