**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Real Analytic Functions

Description

This lecture covers the concept of real analytic functions, focusing on their absolute convergence and neighborhood properties. It explains the criteria for a function to be considered real analytic and explores the implications of such functions in various contexts.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

In course

MATH-421: Evolutional partial differential equations

Techniques et théories de base pour les équations aux dérivées partielles d'évolution. Etude d'exemples fondamentaux: équations du premier ordre, équation des ondes, équation de la chaleur. Théorème d

Instructor

Related concepts (61)

Compact space

In mathematics, specifically general topology, compactness is a property that seeks to generalize the notion of a closed and bounded subset of Euclidean space. The idea is that a compact space has no "punctures" or "missing endpoints", i.e., it includes all limiting values of points. For example, the open interval (0,1) would not be compact because it excludes the limiting values of 0 and 1, whereas the closed interval [0,1] would be compact.

Locally compact space

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which every point has a compact neighborhood. In mathematical analysis locally compact spaces that are Hausdorff are of particular interest; they are abbreviated as LCH spaces. Let X be a topological space. Most commonly X is called locally compact if every point x of X has a compact neighbourhood, i.

Σ-compact space

In mathematics, a topological space is said to be σ-compact if it is the union of countably many compact subspaces. A space is said to be σ-locally compact if it is both σ-compact and (weakly) locally compact. That terminology can be somewhat confusing as it does not fit the usual pattern of σ-(property) meaning a countable union of spaces satisfying (property); that's why such spaces are more commonly referred to explicitly as σ-compact (weakly) locally compact, which is also equivalent to being exhaustible by compact sets.

Relatively compact subspace

In mathematics, a relatively compact subspace (or relatively compact subset, or precompact subset) Y of a topological space X is a subset whose closure is compact. Every subset of a compact topological space is relatively compact (since a closed subset of a compact space is compact). And in an arbitrary topological space every subset of a relatively compact set is relatively compact. Every compact subset of a Hausdorff space is relatively compact.

Countably compact space

In mathematics a topological space is called countably compact if every countable open cover has a finite subcover. A topological space X is called countably compact if it satisfies any of the following equivalent conditions: (1) Every countable open cover of X has a finite subcover. (2) Every infinite set A in X has an ω-accumulation point in X. (3) Every sequence in X has an accumulation point in X. (4) Every countable family of closed subsets of X with an empty intersection has a finite subfamily with an empty intersection.

Related lectures (487)

Open Mapping TheoremMATH-410: Riemann surfaces

Explains the Open Mapping Theorem for holomorphic maps between Riemann surfaces.

Differential Forms IntegrationMATH-410: Riemann surfaces

Covers the integration of differential forms on smooth manifolds, including the concepts of closed and exact forms.

Harmonic Forms and Riemann SurfacesMATH-680: Monstrous moonshine

Explores harmonic forms on Riemann surfaces, covering uniqueness of solutions and the Riemann bilinear identity.

Harmonic Forms: Main TheoremMATH-410: Riemann surfaces

Explores harmonic forms on Riemann surfaces and the uniqueness of solutions to harmonic equations.

Normed SpacesMATH-502: Distribution and interpolation spaces

Covers normed spaces, dual spaces, Banach spaces, Hilbert spaces, weak and strong convergence, reflexive spaces, and the Hahn-Banach theorem.