Clustering: K-means & LDACovers clustering using K-means and LDA, PCA, K-means properties, Fisher LDA, and spectral clustering.
Dimensionality Reduction: PCA & LDACovers PCA and LDA for dimensionality reduction, explaining variance maximization, eigenvector problems, and the benefits of Kernel PCA for nonlinear data.
Clustering & Density EstimationCovers dimensionality reduction, clustering, and density estimation techniques, including PCA, K-means, GMM, and Mean Shift.
Clustering: Theory and PracticeCovers the theory and practice of clustering algorithms, including PCA, K-means, Fisher LDA, spectral clustering, and dimensionality reduction.