**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Lecture# Phase Plane Analysis: Limit Cycles

Description

This lecture covers the concept of limit cycles in phase plane analysis, focusing on the index of equilibrium points and the arbitrary curves chosen to encircle them. It also discusses the abstract plane and the numbering of points related to the origin.

Login to watch the video

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Instructor

In course

Related concepts (81)

Related lectures (15)

ME-523: Nonlinear Control Systems

Les systèmes non linéaires sont analysés en vue d'établir des lois de commande. On présente la stabilité au sens de Lyapunov, ainsi que des méthodes de commande géométrique (linéarisation exacte). Div

Phase plane

In applied mathematics, in particular the context of nonlinear system analysis, a phase plane is a visual display of certain characteristics of certain kinds of differential equations; a coordinate plane with axes being the values of the two state variables, say (x, y), or (q, p) etc. (any pair of variables). It is a two-dimensional case of the general n-dimensional phase space. The phase plane method refers to graphically determining the existence of limit cycles in the solutions of the differential equation.

Limit cycle

In mathematics, in the study of dynamical systems with two-dimensional phase space, a limit cycle is a closed trajectory in phase space having the property that at least one other trajectory spirals into it either as time approaches infinity or as time approaches negative infinity. Such behavior is exhibited in some nonlinear systems. Limit cycles have been used to model the behavior of many real-world oscillatory systems. The study of limit cycles was initiated by Henri Poincaré (1854–1912).

Peano curve

In geometry, the Peano curve is the first example of a space-filling curve to be discovered, by Giuseppe Peano in 1890. Peano's curve is a surjective, continuous function from the unit interval onto the unit square, however it is not injective. Peano was motivated by an earlier result of Georg Cantor that these two sets have the same cardinality. Because of this example, some authors use the phrase "Peano curve" to refer more generally to any space-filling curve.

Nash equilibrium

In game theory, the Nash equilibrium, named after the mathematician John Nash, is the most common way to define the solution of a non-cooperative game involving two or more players. In a Nash equilibrium, each player is assumed to know the equilibrium strategies of the other players, and no one has anything to gain by changing only one's own strategy. The principle of Nash equilibrium dates back to the time of Cournot, who in 1838 applied it to competing firms choosing outputs.

General equilibrium theory

In economics, general equilibrium theory attempts to explain the behavior of supply, demand, and prices in a whole economy with several or many interacting markets, by seeking to prove that the interaction of demand and supply will result in an overall general equilibrium. General equilibrium theory contrasts with the theory of partial equilibrium, which analyzes a specific part of an economy while its other factors are held constant.

Introduction to Structural Mechanics

Introduces resultants in 3D, equilibrium in 2D, and free-body diagrams for structural analysis.

Static Determinacy in Structural Mechanics

Covers equilibrium, free body diagrams, and determinate systems in structural mechanics.

Introduction to Structural Mechanics: Stress and Strain

Covers stress equilibrium, strain, and constitutive equations in 2D and 3D.

Structural Mechanics Principles: Equilibrium and Stability

Explores the principles of structural mechanics, including internal loads, equilibrium stability, and the superposition principle.

Virtual Work II: Examples of Potentials

Covers examples of potentials in virtual work for structural mechanics.