Lecture

Regression Diagnostics

In course
DEMO: est ipsum
Et excepteur ut dolor excepteur sunt reprehenderit sint in elit amet irure id nostrud. Nostrud commodo elit reprehenderit ipsum commodo enim qui laboris incididunt Lorem in anim. Voluptate dolore ex reprehenderit enim occaecat non ad pariatur enim. Ex ex id Lorem eiusmod tempor aute cillum. Id commodo ullamco laboris culpa laborum eu sit id Lorem cupidatat.
Login to see this section
Description

This lecture by the instructor covers the essential regression diagnostics for linear models. It explains the assumptions to check for, including linearity, homoskedasticity, Gaussian distribution, and independent errors. The lecture details how to check these assumptions using residuals, standardised residuals, and various plots. It emphasizes the importance of identifying outliers, influential observations, and covariates left out of the model. Additionally, it discusses how to assess linearity, homoskedasticity, normality, and independence through graphical methods. The lecture concludes with a summary of diagnostic plots commonly used in regression analysis.

Instructors (2)
cupidatat consequat duis non
Qui laboris eiusmod commodo excepteur sit laboris culpa nostrud. Aliqua labore irure amet esse do pariatur ad do exercitation ullamco culpa. Non proident tempor sunt cillum proident ullamco ad aliqua fugiat enim minim eiusmod fugiat commodo.
adipisicing esse nisi
Ex ullamco aliquip ad ut quis fugiat nulla nulla non. Elit aliqua nulla sit aute occaecat anim. Ut irure dolor nisi dolore. Excepteur nulla in ex proident quis sunt enim eu.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (48)
Model Selection Criteria: AIC, BIC, Cp
Explores model selection criteria like AIC, BIC, and Cp in statistics for data science.
Regression Methods: Model Building and Diagnostics
Explores regression methods, covering model building, diagnostics, inference, and analysis of variance.
Logistic Regression: Vegetation Prediction
Explores logistic regression for predicting vegetation proportions in the Amazon region through remote sensing data analysis.
Gaussian Linear Regression: Assumptions and Residuals
Explores the assumptions and checking methods for Gaussian linear regression models using residuals and graphical plots.
Linear Regression Essentials
Covers the essentials of linear regression, focusing on using multiple quantitative explanatory variables to predict a quantitative outcome.
Show more