Lecture

Data Representations: Learning Methods

In course
DEMO: nulla cupidatat aute
Culpa occaecat reprehenderit do voluptate nulla ad cillum. Duis sit velit esse irure qui irure eu reprehenderit magna amet voluptate aliqua veniam in. Veniam ullamco voluptate nisi excepteur minim deserunt irure non. Ipsum irure tempor irure cupidatat consectetur velit est cupidatat nulla ipsum Lorem pariatur.
Login to see this section
Description

This lecture covers the concept of data representations, focusing on polynomial feature expansion, kernel functions, the representer theorem, kernel regression, and kernel SVM. It also discusses the importance of choosing functions for feature expansion and the use of kernels to circumvent this choice.

Instructor
sint laboris duis est
Commodo in aute proident cupidatat veniam dolore ad duis sit. Excepteur reprehenderit consectetur est pariatur. Officia sint minim labore est. Lorem elit est adipisicing fugiat minim magna duis ea ad officia. Esse nisi voluptate cillum aliqua ipsum.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.