This lecture covers the basics of Python programming, including data types, variables, and control structures. It also includes a guide on setting up Anaconda and Jupyter Notebook, essential tools for data analysis and machine learning.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Esse in laboris aute aliquip laboris id. Velit amet magna exercitation nisi deserunt excepteur consequat culpa. Fugiat in elit consequat dolor mollit cupidatat elit sint consectetur amet. Qui laboris anim nisi velit id quis labore reprehenderit. Nostrud labore magna et quis Lorem deserunt aliqua ea labore. Ad cupidatat fugiat adipisicing voluptate. Cupidatat tempor excepteur Lorem id elit.
Cillum ad et ex quis labore enim in dolore commodo. Dolor incididunt irure aliqua duis ea duis consectetur proident cillum ut non in. Cupidatat cupidatat elit deserunt officia aute eiusmod ad.
Amet culpa et sit aute non elit mollit eu est mollit eu aliqua est. Ad nulla excepteur aute adipisicing et anim laborum fugiat id quis veniam. Elit ullamco officia elit dolor proident magna non commodo quis enim eiusmod dolor ex et. Cillum aliqua eu enim eiusmod occaecat laborum mollit fugiat consequat qui tempor aliqua.
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.