This lecture covers the basics of Python programming, including data types, variables, and control structures. It also includes a guide on setting up Anaconda and Jupyter Notebook, essential tools for data analysis and machine learning.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Elit laboris elit in et eu minim laboris nisi do do voluptate do voluptate mollit. Mollit culpa consequat mollit eiusmod nisi dolor aliquip laboris et officia. Ipsum aliqua velit duis eu laborum dolore in et veniam eiusmod culpa eiusmod. Excepteur occaecat adipisicing do mollit in cillum nulla labore pariatur ad sint veniam velit. Voluptate excepteur commodo magna sit reprehenderit proident qui occaecat quis occaecat sit esse voluptate. Dolore proident proident duis dolore id irure occaecat sunt anim.
Est in dolor sit consequat cupidatat ad duis reprehenderit esse. Velit esse ex duis nostrud proident velit nostrud sit consequat est id culpa tempor qui. Minim ut laborum elit enim exercitation dolore eu aliqua. Pariatur laborum enim occaecat ex sunt magna. Elit do mollit occaecat fugiat sint in velit enim Lorem enim sint sunt occaecat. Sit amet aliquip occaecat sit amet ex sit duis ea commodo esse amet. Ut esse officia culpa ullamco eiusmod.
Proident anim amet ex commodo reprehenderit pariatur amet anim. Aliqua cillum elit ut duis nostrud ad duis et deserunt deserunt eu mollit cillum. Consequat cillum reprehenderit exercitation ad excepteur. Ipsum do consectetur ipsum nulla nisi labore eiusmod ipsum est.
Focuses on advanced pandas functions for data manipulation, exploration, and visualization with Python, emphasizing the importance of understanding and preparing data.
Offers a comprehensive introduction to Data Science, covering Python, Numpy, Pandas, Matplotlib, and Scikit-learn, with a focus on practical exercises and collaborative work.