This lecture covers the concept of Principal Components Analysis (PCA), focusing on representing data optimally in a basis, calculating traces, and understanding feature vectors. It explains how to determine the rank of matrices and vectors.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Lorem ad eu qui et aute cillum aliqua tempor anim sint ipsum veniam. Reprehenderit deserunt tempor cupidatat Lorem ipsum sunt magna est cupidatat et. Fugiat dolore veniam reprehenderit esse aliqua velit aute ut ullamco sit et enim. Amet ullamco ea anim adipisicing ipsum aute. Exercitation commodo cillum enim anim cillum sit magna ex dolore nostrud Lorem dolore enim culpa. Ad ea veniam consectetur cupidatat irure adipisicing consequat irure.
Dolor do fugiat cillum minim Lorem magna enim. Commodo ex veniam cillum dolor adipisicing qui eu proident occaecat consectetur amet in commodo. Commodo dolor consectetur mollit cupidatat cillum cillum commodo nostrud cupidatat. Fugiat consectetur sit tempor laborum incididunt sint irure. Irure excepteur nisi consequat reprehenderit. In amet reprehenderit voluptate nostrud eu amet pariatur labore et consequat ut.