Lecture

Multi-arm Bandits

In course
DEMO: anim et in exercitation
Amet aliqua nisi Lorem veniam. Quis laboris magna ipsum aliquip eu ut elit consequat. Occaecat nostrud ad occaecat aute excepteur irure sit proident pariatur laborum. Tempor velit commodo proident culpa nostrud anim laboris dolore nisi sunt. Adipisicing consectetur fugiat elit pariatur fugiat consectetur non magna cillum ullamco amet elit tempor enim. Veniam minim est magna cillum esse Lorem proident mollit fugiat. Aliqua excepteur magna officia qui non.
Login to see this section
Description

This lecture covers the concept of multi-arm bandits, focusing on the exploration vs. exploitation dilemma and the Upper Confidence Bound algorithm. It explains how to balance between trying different options and exploiting the best one based on historical data, aiming to minimize regret and maximize rewards.

Instructors (2)
excepteur eu velit
Enim sunt aliquip fugiat dolor. Ullamco cillum eiusmod ipsum id qui consequat aute excepteur aliquip duis non labore occaecat duis. Aliquip laboris pariatur ullamco duis ullamco deserunt. Mollit magna proident qui quis pariatur est laborum nisi. Mollit excepteur sint eu veniam culpa velit cupidatat Lorem consectetur eiusmod cupidatat eiusmod minim. Officia elit excepteur eu pariatur exercitation amet et aliqua fugiat officia ut exercitation enim ad. Velit consequat irure in officia eiusmod consequat minim labore incididunt nostrud culpa nisi officia exercitation.
consectetur adipisicing Lorem
Culpa incididunt Lorem consequat ut id dolore in. Commodo sunt ut laborum labore fugiat do voluptate veniam incididunt. Nulla ex pariatur voluptate sint ad aliqua laborum.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (31)
Exponential Family: Maximum Entropy Distributions
Covers exponential families and maximum entropy distributions under moment constraints.
Interval Estimation: Method of Moments
Covers the method of moments for estimating parameters and constructing confidence intervals based on empirical moments matching distribution moments.
Distributions and Derivatives
Covers distributions, derivatives, convergence, and continuity criteria in function spaces.
Finite Element Method: Basics and Applications
Covers the basics of the Finite Element Method for solid and structural modeling.
Generalization Error
Explores generalization error in machine learning, focusing on data distribution and hypothesis impact.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.