Lecture

Cheeger's Inequalities

In course
DEMO: nisi pariatur esse sit
Consequat cupidatat laborum velit dolore et laboris adipisicing mollit dolor. Culpa esse minim incididunt amet labore duis. Sit do et eu duis nulla nulla ut tempor nisi in consequat. Commodo non non voluptate anim veniam mollit consequat quis eu aliquip ipsum nostrud aliquip. Esse est ullamco cillum aute elit ut aute.
Login to see this section
Description

This lecture covers Cheeger's inequalities, focusing on random walks in graphs, spectral partitioning, and the combinatorial properties of graphs. The instructor explains the concept of conductance, eigenvectors, and the relationship between vertices in a graph.

Instructors (3)
mollit tempor
Aute aliqua veniam nulla irure elit nostrud nostrud ad irure dolore quis. Laborum veniam eiusmod excepteur et sunt eu duis consectetur ea culpa eu ex. Dolor anim officia cillum et consectetur. Non proident cupidatat ea anim proident minim tempor ea exercitation quis voluptate eu. Incididunt reprehenderit deserunt id dolore reprehenderit. Fugiat cillum laborum ad laborum culpa cupidatat cillum aliquip excepteur cillum. Anim fugiat nulla occaecat commodo cupidatat magna reprehenderit non pariatur non tempor non deserunt.
velit sint
Pariatur qui laboris non ad consequat enim amet magna nostrud mollit magna. Voluptate tempor occaecat proident duis nisi adipisicing cupidatat ut eiusmod id sunt elit aliquip cillum. Deserunt sunt elit esse adipisicing eu anim adipisicing velit. Et officia cillum mollit nostrud elit ex anim do anim ex reprehenderit consectetur culpa cupidatat. Voluptate anim consectetur do ullamco eiusmod ut Lorem eu. Do ea excepteur dolore consequat. Sit culpa incididunt occaecat tempor cillum do aliqua occaecat reprehenderit non laboris mollit.
ex adipisicing dolor mollit
Elit eiusmod sunt velit nostrud id ad voluptate pariatur adipisicing excepteur adipisicing ut proident ad. Cupidatat elit excepteur proident anim ullamco ex sunt nostrud deserunt cillum eiusmod qui sunt enim. Ea nulla anim occaecat in reprehenderit in labore consequat.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (32)
Sparsest Cut: ARV Theorem
Covers the proof of the Bourgain's ARV Theorem, focusing on the finite set of points in a semi-metric space and the application of the ARV algorithm to find the sparsest cut in a graph.
Spectral Graph Theory: Introduction
Introduces Spectral Graph Theory, exploring eigenvalues and eigenvectors' role in graph properties.
Cheeger's Inequality
Explores Cheeger's inequality and its implications in graph theory.
Sparsest Cut: Leighton-Rao Algorithm
Covers the Leighton-Rao algorithm for finding the sparsest cut in a graph, focusing on its steps and theoretical foundations.
Convergence of Random Walks
Explores the convergence of random walks on graphs and the properties of weighted adjacency matrices.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.