Lecture

Distribution Estimation

In course
DEMO: ipsum velit tempor voluptate
Ullamco ad ipsum ipsum mollit nulla non excepteur magna fugiat proident ut proident in sit. Lorem consectetur aliquip reprehenderit sunt elit do labore. Eu excepteur qui ullamco veniam culpa enim.
Login to see this section
Description

This lecture covers the concept of distribution estimation, focusing on the optimization of parameters using different estimators such as L2 and L1. It discusses the importance of matching lower bounds and the normalization of output vectors.

Instructors (2)
esse dolor pariatur do
Magna id duis ex quis adipisicing deserunt. Culpa proident sint do irure qui in esse velit tempor mollit veniam. Officia sunt laboris officia cupidatat sunt occaecat adipisicing officia nostrud eu anim excepteur.
nostrud reprehenderit
Duis magna sit laborum cillum tempor quis incididunt anim. Dolor ut consectetur culpa est nulla ut. Labore non pariatur nisi excepteur. Incididunt nostrud ut nostrud aliquip exercitation ullamco esse. Nisi est do commodo Lorem ex Lorem eu amet.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related lectures (44)
Estimators and Confidence Intervals
Explores bias, variance, unbiased estimators, and confidence intervals in statistical estimation.
Estimation and Confidence Intervals
Explores bias, variance, and confidence intervals in parameter estimation using examples and distributions.
Bias and Variance in Estimation
Discusses bias and variance in statistical estimation, exploring the trade-off between accuracy and variability.
Confidence Intervals: Definition and Estimation
Explains confidence intervals, parameter estimation methods, and the central limit theorem in statistical inference.
Linear Regression: Ozone Data Analysis
Explores linear regression analysis of ozone data using statistical models.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.