Explores deep learning for NLP, covering word embeddings, context representations, learning techniques, and challenges like vanishing gradients and ethical considerations.
Provides an overview of Natural Language Processing, focusing on transformers, tokenization, and self-attention mechanisms for effective language analysis and synthesis.
Delves into training and applications of Vision-Language-Action models, emphasizing large language models' role in robotic control and the transfer of web knowledge. Results from experiments and future research directions are highlighted.
Explores coreference resolution models, challenges in scoring spans, graph refinement techniques, state-of-the-art results, and the impact of pretrained Transformers.