Explores bug-finding, verification, and the use of learning-aided approaches in program reasoning, showcasing examples like the Heartbleed bug and differential Bayesian reasoning.
Covers the significance of subtracting the mean reward in policy gradient methods for deep reinforcement learning, reducing noise in the stochastic gradient.
Covers the basics of reinforcement learning, including Markov Decision Processes and policy gradient methods, and explores real-world applications and recent advances.
Explores perception in deep learning for autonomous vehicles, covering image classification, optimization methods, and the role of representation in machine learning.
Covers deep reinforcement learning techniques for continuous control, focusing on proximal policy optimization methods and their advantages over standard policy gradient approaches.