By Meenakshi Khosla explores data-driven modeling in large-scale naturalistic neuroscience, focusing on brain activity representation and computational models.
Explores neuroimaging basics, brain network scales, connectivity, history, and physics, emphasizing the importance of understanding data at different scales.
Explores Graph Signal Processing applied to brain networks, emphasizing the relationship between brain function and structure using methods like Graph Fourier Transform and Structural-Decoupling Index.
Covers the basics of brain connectomics, including brain networks, terminology, data schemes, preprocessing, node connectivity, and functional connectome structure.