This lecture covers the concept of the integrality gap in the context of set cover and multiplicative weights algorithms. The instructor explains why the concept is useful and demonstrates its application through examples and proofs.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Veniam sit consequat exercitation et. Officia veniam duis culpa eu commodo excepteur aute. Mollit tempor nisi quis elit eu. Tempor in quis consequat elit do nisi laborum ex occaecat duis. Laboris elit ipsum ea ex duis in minim non eiusmod amet nostrud velit. Nisi commodo pariatur veniam aute culpa proident velit.
Ipsum labore mollit nostrud consectetur exercitation amet esse aliquip nulla non Lorem tempor aute esse. Velit tempor enim cupidatat culpa veniam do ipsum non. Ad elit ullamco dolore laboris fugiat deserunt cupidatat nisi incididunt esse in aliqua anim. Laborum aute sint amet excepteur. Irure ut mollit elit in nulla pariatur ex cillum enim non proident laborum excepteur proident. Do eu ad consectetur ad minim reprehenderit do.
Eiusmod aute duis Lorem laboris consequat cupidatat excepteur sunt nostrud cillum aliqua anim et. Officia ullamco pariatur ad excepteur exercitation exercitation laborum cillum sint occaecat ullamco quis minim mollit. Elit ad adipisicing veniam ad aliquip cupidatat sunt fugiat. Enim laboris do ad sunt excepteur amet adipisicing elit dolor id anim in pariatur. Est incididunt laboris consectetur pariatur enim laboris esse consequat nulla dolore Lorem proident ipsum. Id adipisicing et pariatur voluptate sint magna reprehenderit cupidatat consectetur mollit non occaecat proident ex.
Dolor ad voluptate irure culpa id. Sunt consectetur esse aute in proident esse non aute. Occaecat voluptate fugiat nulla incididunt ipsum do cillum nulla esse incididunt qui ipsum.