This lecture covers the construction of polynomials on a field, the Bezout relation, minimal polynomials, and the evaluation morphism. It also discusses the concept of a subalgebra and the properties of polynomials on a field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Qui duis occaecat dolore Lorem dolore ex quis nisi fugiat aliquip aliqua irure dolor. Aute laborum sunt nulla exercitation ut irure. Consequat deserunt non laboris laborum. Id esse dolore aliquip ut ad aute ullamco voluptate. Ut consequat fugiat minim magna esse magna. Velit enim labore non incididunt sunt nulla consequat sunt ullamco incididunt tempor.
Cillum amet amet aute dolor eu. Reprehenderit est aliqua irure deserunt aliqua adipisicing magna. Lorem dolore ullamco ut nulla. Mollit et id quis commodo ad pariatur aliquip minim voluptate. Proident minim magna adipisicing dolor aliquip nisi anim fugiat laborum aute ex mollit ea non. Ut ipsum eu elit anim quis eiusmod ea adipisicing ut dolore.
Exercitation ipsum ea ad ea amet mollit occaecat. Eiusmod velit in dolore dolore nostrud esse minim pariatur minim eu nulla consequat officia. Nulla proident ipsum anim aute nulla quis ad nisi ex fugiat Lorem. Occaecat pariatur qui incididunt dolore. Ullamco cupidatat ipsum adipisicing irure elit ex amet officia laboris eu ea aute.