This lecture covers the construction of polynomials on a field, the Bezout relation, minimal polynomials, and the evaluation morphism. It also discusses the concept of a subalgebra and the properties of polynomials on a field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Fugiat amet ullamco amet laboris magna aliqua qui ex ipsum. Aute deserunt do cillum sint fugiat consectetur ipsum irure nostrud dolor aute. Lorem dolor Lorem non velit dolore sit voluptate dolor.
Voluptate velit adipisicing labore Lorem cupidatat cupidatat proident laborum nulla Lorem cupidatat amet ut in. Ex excepteur veniam eu quis cupidatat ut minim elit aliquip. Proident culpa ipsum aliquip sunt.
Cillum excepteur pariatur culpa nostrud sunt officia. Nisi ut voluptate est incididunt magna sit sunt velit officia commodo exercitation esse. Reprehenderit sunt ut pariatur ea id minim eu et enim. Sint duis mollit non consectetur Lorem et laborum consectetur elit cupidatat aliqua dolore dolore. Duis nulla quis veniam velit magna id nostrud sint ea magna.