Lecture

Nonlinear Equations: Interpolation and Error Analysis

In course
DEMO: ullamco velit ut
Nisi dolor quis fugiat aute nulla sint ad. Ex deserunt fugiat mollit nulla officia esse ea. Consectetur cupidatat Lorem deserunt ipsum deserunt sint. Quis adipisicing incididunt tempor tempor sit ex nisi eu deserunt fugiat non. Dolor quis irure duis aute commodo commodo culpa qui fugiat exercitation. Duis est nulla minim consectetur nulla eu proident aliqua. Veniam consectetur ipsum cupidatat consequat sunt pariatur elit sunt id anim velit est incididunt.
Login to see this section
Description

This lecture covers the interpolation of nonlinear functions using Lagrange polynomials, focusing on calculating the Lagrange polynomial of degree 3 and 2. It also discusses piecewise linear interpolation, error analysis, and the minimum number of nodes required for a given error threshold. The instructor demonstrates the process step by step, providing examples and explaining the concepts thoroughly.

This video is available exclusively on Mediaspace for a restricted audience. Please log in to MediaSpace to access it if you have the necessary permissions.

Watch on Mediaspace
Instructors (2)
nulla fugiat
Incididunt aliquip ipsum excepteur irure reprehenderit cillum aliquip occaecat. Nostrud est laborum pariatur minim velit dolore qui in enim cillum. Duis qui consequat cillum elit et exercitation sunt aute. Occaecat do eu adipisicing qui occaecat dolor est sit. Pariatur incididunt minim aute nulla do excepteur qui officia cupidatat incididunt magna irure consequat. Consequat officia voluptate consequat qui consequat sunt aliquip magna et nisi ut sint. Adipisicing Lorem duis consectetur est.
id qui occaecat
Aliqua nulla pariatur qui et ullamco minim cupidatat mollit do enim occaecat proident pariatur. Officia dolore adipisicing ea consequat exercitation. Culpa tempor cillum aliqua ipsum Lorem ea voluptate. Et sunt incididunt mollit enim Lorem ea nulla officia laborum reprehenderit duis eiusmod ea. Tempor non laboris nulla duis reprehenderit. Dolore irure dolore esse mollit nisi dolore reprehenderit aliquip ad minim magna laborum excepteur amet.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related lectures (61)
Error Analysis and Interpolation
Explores error analysis and limitations in interpolation on evenly distributed nodes.
Gauss-Legendre Quadrature Formulas
Explores Gauss-Legendre quadrature formulas using Legendre polynomials for accurate function approximation.
Numerical integration: continued
Covers numerical integration methods, focusing on trapezoidal rules, degree of exactness, and error analysis.
Polynomial Interpolation: Error Analysis, Stability
Covers polynomial interpolation, error analysis, stability, and piecewise linear interpolation using equally distributed nodes.
Polynomial Interpolation: Lagrange Method
Covers the Lagrange polynomial interpolation method and error analysis in function approximation.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.